The Role of Technology in Enhancing Healthcare Administration and Service Delivery

Authors

  • Abimbola Yusuf Harrisburg University of Science and Technology, USA
  • Lanrewaju Olaniyan
  • Hamzat Sakiru Ayobami
  • Adetola Kareem Hudallah Oluwakemi
  • 5Latifat Abolore Igbin

DOI:

https://doi.org/10.63084/cognexus.v1i02.77

Keywords:

Healthcare technology, telemedicine, artificial intelligence, electronic health records, digital health transformation

Abstract

Abstract

Technology integration in healthcare administration and service delivery has transformed medical practices, enhancing efficiency, accessibility, and patient outcomes. Innovations such as telemedicine, artificial intelligence (AI), the Internet of Things (IoT), big data analytics, and blockchain have streamlined hospital operations, optimized patient management, and improved diagnostic accuracy. However, despite these advancements, widespread adoption faces significant barriers, including financial constraints, interoperability challenges, cybersecurity concerns, workforce resistance, and regulatory complexities. This study explores the impact of technological innovations in healthcare, identifies the key challenges hindering their implementation, and proposes strategic policy recommendations to enhance adoption. Key areas of focus include investments in digital infrastructure, standardization of electronic health records (EHRs), workforce training, and the development of supportive policies that promote global collaboration. The research also highlights future directions in healthcare technology, emphasizing the importance of sustainability, inclusivity, and ethical considerations in digital health transformation. By addressing existing challenges and fostering an enabling environment for innovation, healthcare systems can fully leverage technology to improve service delivery, reduce disparities, and create a more resilient and equitable global healthcare landscape.

Keywords: Healthcare technology, telemedicine, artificial intelligence, electronic health records, digital health transformation.

 

Résumé

L’intégration de la technologie dans l’administration des soins de santé et la prestation des services a transformé les pratiques médicales, améliorant l’efficacité, l’accessibilité et les résultats pour les patients. Des innovations telles que la télémédecine, l’intelligence artificielle (IA), l’Internet des objets (IoT), l’analyse de big data et la blockchain ont rationalisé les opérations hospitalières, optimisé la gestion des patients et accru la précision des diagnostics. Cependant, malgré ces avancées, l’adoption généralisée de ces technologies se heurte à plusieurs obstacles majeurs, notamment des contraintes financières, des défis d’interopérabilité, des préoccupations liées à la cybersécurité, une résistance du personnel et des complexités réglementaires. Cette étude explore l’impact des innovations technologiques dans le secteur de la santé, identifie les principaux défis qui freinent leur mise en œuvre et propose des recommandations politiques stratégiques pour en favoriser l’adoption. Les domaines clés abordés incluent les investissements dans l’infrastructure numérique, la normalisation des dossiers de santé électroniques (DSE), la formation du personnel et le développement de politiques de soutien favorisant la collaboration mondiale. La recherche met également en lumière les perspectives futures des technologies de santé, en soulignant l’importance de la durabilité, de l’inclusivité et des considérations éthiques dans la transformation numérique de la santé. En surmontant les défis actuels et en créant un environnement propice à l’innovation, les systèmes de santé pourront pleinement tirer parti de la technologie pour améliorer la qualité des services, réduire les inégalités et bâtir un paysage sanitaire mondial plus résilient et équitable.

Mots-clés : Technologie de la santé, télémédecine, intelligence artificielle, dossiers de santé électroniques, transformation numérique de la santé.

References

Aldahdooh, A., Hamidouche, W., Fezza, S. A., & Déforges, O. (2022). Adversarial example detection for DNN models: A review and experimental comparison. Artificial Intelligence Review, 55(6), 4403–4462.

Alevizos, L., & Dekker, M. (2024). Towards an AI-enhanced cyber threat intelligence processing pipeline. arXiv preprint, arXiv:2403.03265.

Anthony, H. M., Braimoh, J. J., & Ehigie, D. E. (2021). Challenges and adaptations in implementing e-learning for second language acquisition in Nigerian schools during the COVID-19 pandemic: A methodological analysis. Journal of Emerging Technologies and Innovative Research, 8(9), 407–419.

Arakpogun, E. O., Elsahn, Z., Olan, F., & Elsahn, F. (2021). Artificial intelligence in Africa: Challenges and opportunities. In The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success (pp. 375–388).

Banik, S., & Dandyala, S. S. M. (2023). The role of artificial intelligence in cybersecurity opportunities and threats. International Journal of Advanced Engineering Technologies and Innovations, 1(04), 420–440.

Bécue, A., Praça, I., & Gama, J. (2021). Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities. Artificial Intelligence Review, 54(5), 3849–3886.

Bernadette, B.-A., Latifat, O. A., & Ogedengbe, D. E. (2022). Integrative HR approaches in mergers and acquisitions ensuring seamless organizational synergies. Magna Scientia Advanced Research and Reviews, 6(1), 078–085.

Bonfanti, M. E. (2022). Artificial intelligence and the offence-defence balance in cyber security. In Cyber Security: Socio-Technological Uncertainty and Political Fragmentation (pp. 64–79). London: Routledge.

Bossaerts, P., & Murawski, C. (2017). Computational complexity and human decision-making. Trends in Cognitive Sciences, 21(12), 917–929.

Braimoh, J. J. (2024). Texting language as a digital symbolic current: Implications for pragmatics and intercultural communication in the digital age. Journal of Studies in Language, Culture, and Society, 7(2), 199–208.

Char, D. S., Abràmoff, M. D., & Feudtner, C. (2020). Identifying ethical considerations for machine learning healthcare applications. The American Journal of Bioethics, 20(11), 7–17.

Chowdhry, D. G., Verma, R., & Mathur, M. (2020). The Evolution of Business in the Cyber Age: Digital Transformation, Threats, and Security. CRC Press.

Darktrace. (2022). Darktrace AI: Combining Supervised and Unsupervised Machine Learning. https://darktrace.com/resources/darktrace-ai-combining-supervised-and-unsupervised-machine

Dash, B., Sharma, P., & Ali, A. (2022). Federated learning for privacy-preserving: A review of PII data analysis in Fintech. International Journal of Software Engineering & Applications (IJSEA), 13(4).

Dhabliya, D., Gujar, S. N., Dhabliya, R., Chavan, G. T., Kalnawat, A., & Bendale, S. P. (2023). Temporal intelligence in AI-enhanced cyber forensics using time-based analysis for proactive threat detection. Journal of Electrical Systems, 19(3), 126–146.

Egbuna, O. P. (2021). The impact of AI on cybersecurity: Emerging threats and solutions. Journal of Science & Technology, 2(2), 43–67.

Esezoobo, S. O., & Braimoh, J. J. (2023). Integrating legal, ethical, and technological strategies to mitigate AI deepfake risks through strategic communication. International Journal of Scientific Research and Management, 11(08), 914–928. https://doi.org/10.18535/ijsrm/v11i08.ec02

Fontes, C., Hohma, E., Corrigan, C. C., & Lütge, C. (2022). AI-powered public surveillance systems: Why we (might) need them and how we want them. Technology in Society, 71, 102137.

Ganesh, A. D., & Kalpana, P. (2022). Future of artificial intelligence and its influence on supply chain risk management–A systematic review. Computers & Industrial Engineering, 169, 108206.

Golbin, I., Rao, A. S., Hadjarian, A., & Krittman, D. (2020). Responsible AI: A primer for the legal community. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 2121–2126). IEEE.

Google. (2023). Project Shield. https://projectshield.withgoogle.com/

Hamon, R., Junklewitz, H., Sanchez, I., Malgieri, G., & De Hert, P. (2022). Bridging the gap between AI and explainability in the GDPR: Towards trustworthiness-by-design in automated decision-making. IEEE Computational Intelligence Magazine, 17(1), 72–85.

Hoffman, W. (2021). AI and the future of cyber competition. CSET Issue Brief, 1–35.

Hummelholm, A. (2023). AI-based quantum-safe cybersecurity automation and orchestration for edge intelligence in future networks. European Conference on Cyber Warfare and Security.

IBM. (2023). Watson for Cyber Security. https://www.ibm.com/security/artificial-intelligence

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human–AI symbiosis in organizational decision making. Business Horizons.

Jimmy, F. (2021). Emerging threats: The latest cybersecurity risks and the role of artificial intelligence in enhancing cybersecurity defenses. Valley International Journal Digital Library, 564–574.

Johnson, J. (2019). The AI–cyber nexus: Implications for military escalation, deterrence, and strategic stability. Journal of Cyber Policy, 4(3), 442–460.

Kapoor, R., & Ghosal, I. (2022). Will artificial intelligence compliment or supplement the human workforce in organizations? A shift to a collaborative human–machine environment. International Journal on Recent Trends in Business and Tourism.

Kinyua, J., & Awuah, L. (2021). AI/ML in security orchestration, automation and response: Future research directions. Intelligent Automation & Soft Computing, 28(2).

Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner, L., Schmidt, E., Sesing, A., & Baum, K. (2021). What do we want from explainable artificial intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 296, 103473.

Laux, J. (2023). Institutionalised distrust and human oversight of artificial intelligence: Toward a democratic design of AI governance under the European Union AI Act. SSRN Electronic Journal.

Lee, H. W., Han, T. H., & Lee, T. (2023). Reference-based AI decision support for cybersecurity. IEEE Access, 11, 143324–143339.

Lescrauwaet, L., Wagner, H., Yoon, C., & Shukla, S. (2022). Adaptive legal frameworks and economic dynamics in emerging technologies: Navigating the intersection for responsible innovation. Law and Economics, 16(3), 202–220.

Maddireddy, B. R., & Maddireddy, B. R. (2021). Cybersecurity threat landscape: Predictive modelling using advanced AI algorithms. Revista Española de Documentación Científica, 15(4), 126–153.

Marda, V. (2018). Artificial intelligence policy in India: A framework for engaging the limits of data-driven decision-making. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180087.

Omoregie, I., Anthony, H. M., & Braimoh, J. J. (2025). Comparative analysis of instructional models for designing effective online courses: ADDIE, SAM, and Dick & Carey approaches. Journal of Languages & Translation, 5(1), 33–45.

Onomejoh, P., Ehigie, D. E., Igbinovia, O., & Braimoh, J. J. (2024). Navigating cultural sensitivity in translation: The role of interpersonal communication in translating sensitive narratives. Journal of Science and Knowledge Horizons, 4(2), 204–229. https://doi.org/10.34118/jskp.v4i02.4020

Ronchi, A. M. (2022). Human factor, resilience, and cyber/hybrid influence. Information & Security, 53(2), 221–239.

Shah, V. (2021). Machine learning algorithms for cybersecurity: Detecting and preventing threats. Revista Española de Documentación Científica, 15(4), 42–66.

Sitton, M., & Reich, Y. (2018). EPIC framework for enterprise processes integrative collaboration. Systems Engineering, 21, 30–46.

Sontan, A. D., & Samuel, S. V. (2024). The intersection of artificial intelligence and cybersecurity: Challenges and opportunities. World Journal of Advanced Research and Reviews, 21(2), 1720–1736.

Stevens, T. (2020). Knowledge in the grey zone: AI and cybersecurity. Digital War, 1(1), 164–170.

Thapa, C., & Camtepe, S. (2021). Precision health data: Requirements, challenges and existing techniques for data security and privacy. Computers in Biology and Medicine, 129, 104130.

Tschider, C. A. (2020). Beyond the "black box". Denver Law Review, 98, 683.

Umoh, B., Bello, A. A., Okika, N., Ukatu, C. E., & Kabiru, A. O. (2025). The intersection of artificial intelligence and human decision-making in cybersecurity resilience: Business analysis perspective. CogNexus, 1(2), 1–21.

Vaseashta, A. (2022). Nexus of advanced technology platforms for strengthening cyber-defense capabilities. In Practical Applications of Advanced Technologies for Enhancing Security and Defense Capabilities: Perspectives and Challenges for the Western Balkans (pp. 14–31). IOS Press.

Verma, R., Koul, S., & Ajaygopal, K. V. (2023). Evaluation and selection of a cybersecurity platform ─ Case of the power sector in India. Decision Making: Applications in Management and Engineering.

Whyte, C. (2020). Problems of poison: New paradigms and "agreed" competition in the era of AI-enabled cyber operations. In 2020 12th International Conference on Cyber Conflict (CyCon) (Vol. 1300, pp. 215–232).

Downloads

Published

2025-04-06

How to Cite

Yusuf, A., Olaniyan, L., Ayobami, H. S., Oluwakemi, A. K. H., & Igbin , 5Latifat A. (2025). The Role of Technology in Enhancing Healthcare Administration and Service Delivery. CogNexus, 1(02), 37–50. https://doi.org/10.63084/cognexus.v1i02.77

Issue

Section

Articles